
1

 Submitted to CHI'2000 - do not cite.

Instrumental Interaction: An Interaction Model for
Designing Post-WIMP User Interfaces

Michel Beaudouin-Lafon
University of Aarhus

Dept of Computer Science
Aabogade 34

DK-8200 Aarhus N - Denmark
mbl@daimi.au.dk

ABSTRACT
This article introduces a new interaction model called
Instrumental Interaction that extends and generalizes the
principles of direct manipulation. It covers existing
interaction styles, including traditional WIMP interfaces, as
well as new interaction styles such as two-handed input and
augmented reality. It defines a design space for new
interaction techniques and a set of properties for comparing
them. Instrumental Interaction describes graphical user
interfaces in terms of domain objects and interaction
instruments. Interaction between users and domain objects
is mediated by interaction instruments, similar to the tools
and instruments we use in the real world to interact with
physical objects. The article presents the model, applies it
to describe and compare a number of interaction techniques,
and shows how it was used to create a new interface for
searching and replacing text.

Keywords
Interaction model, WIMP interfaces, direct manipulation,
post-WIMP interfaces, instrumental interaction

INTRODUCTION
In the early eighties, the Xerox Star user interface (Smith et
al., 1982) and the principles of direct manipulation
(Shneiderman, 1983) led to a powerful graphical user
interface model, referred to as WIMP (Windows, Icons,
Menus and Pointing). WIMP interfaces revolutionized
computing, making computers accessible to a broad
audience for a variety of applications.

In the last decade, HCI researchers have introduced
numerous new interaction techniques, such as toolglasses
(Bier et al., 1993) and zoomable user interfaces (Bederson &
Hollan, 1994). Although some have been shown to be
more efficient than traditional techniques (e.g., marking
menus, Kurtenbach & Buxton, 1994) few have been
incorporated into commercial systems. A likely reason is
that integrating new interaction techniques into an interface
is challenging for both designers and developers. Designers
find it faster and easier to stick with a small set of well-

understood techniques. Similarly, developers find it more
efficient to take advantage of the extensive support for
WIMP interaction provided by current development tools.

The leap from WIMP to newer "post-WIMP" graphical
interfaces, which take advantage of novel interaction
techniques, requires both new interaction models and
corresponding tools to facilitate development. This paper
focuses on the first issue by introducing a new interaction
model, called Instrumental Interaction, that extends and
generalizes the principles of direct manipulation to also
encompass a wide range of graphical interaction techniques.
The Instrumental Interaction model has the following goals:

• cover the state-of-the-art in graphical interaction
techniques;

• provide qualitative and quantitative ways to compare
interaction techniques, to give designers the basis for
an informed choice when selecting a given technique
to address a particular interface problem;

• define a design space in which unexplored areas can be
identified and lead to new interaction techniques; and

• open the way to a new generation of user interface
development tools that make it easy to integrate the
latest interaction techniques in interactive applications.

After a review of related work, this paper analyzes the
limits of current WIMP interfaces. The Instrumental
Interaction model is introduced and applied to several
existing interaction techniques as well as to the design of a
new interface for searching and replacing text. Finally the
paper concludes with suggestions for future work.

RELATED WORK
In this paper, an interaction model is defined as follows:

An interaction model is a set of principles, rules and
properties that guide the design of an interface. It
describes how to combine interaction techniques in a
meaningful and consistent way and defines the "look
and feel" of the interaction from the user's
perspective. Properties of the interaction model can
be used to evaluate specific interaction designs.

Direct Manipulation (Shneiderman, 1983) is a generic
interaction model, while style guides (e.g. Apple, 1992)
describe more precise and specific models. Took (1990)
introduced a model called Surface Interaction and Holland &
Oppenheim (1999) a model called Direct Combination.

2

An interaction model differs from the architectural model of
an interface, which describes the functional elements in the
implementation of the interface and their relationships (see
Gram & Cockton, 1996, for a review). User interface
development environments have generated a variety of
implementation models for developing interfaces (see
Myers, 1995, for a review), e.g. the widget model of the
X/Motif toolkit (Heller et al., 1994) or Garnet's Interactors
model (Myers, 1990). MVC (Krasner & Pope, 1988) is a
well-known model that was created to support the Xerox
Star user interface and has influenced many other
architectural and implementation models. Whereas
architectural models are aimed at interface development, an
interaction model is aimed at interface design.

The model-based approach and its associated tools (Szekely
et al., 1993) helps bridge the gap between interaction and
architectural models by offering a higher-level approach to
the design of interactive systems.

Device-level models such as logical input devices (Foley et
al., 1984) or Card et al.'s (1991a) taxonomy operate at a
lower level of abstraction than interaction models.
Understanding the role of the physical devices in interaction
tasks is a critical component of the definition of the
Instrumental Interaction model.

At the theoretical level, Activity Theory (Bødker, 1991)
provides a relevant framework for analyzing interaction as a
mediation process between users and objects of interest.

Finally, Instrumental Interaction is grounded in the large
(and growing) number of graphical interaction techniques
that have been developed in recent years, some of which are
referenced in the rest of this article.

FROM WIMP TO POST-WIMP INTERFACES
The WIMP interaction model can be outlined as follows:

• application objects are displayed in document windows;

• objects can be selected and sometimes dragged and
dropped between different windows; and

• commands are invoked through menus or toolbars,
often bringing up a dialog box that must be filled in
before the command's effect on the object is visible.

This section uses Shneiderman's (1983) principles of direct
manipulation to analyze WIMP interfaces:

1. Continuous Representation of objects of interest
Objects of interest are central to direct manipulation. They
are the objects that the user is interested in to achieve a
given task, such as the text and drawings of a document or
the formulae and values in a spreadsheet. Principle 1 asserts
that objects of interest should be present at all times. Since
objects of interest are often larger than the screen or window
in which they are displayed, WIMP interfaces makes them
accessible at all times through scrolling, panning or
zooming. This accessibility is hindered by the growing
number of interface objects that are not objects of interest
such as toolbars, floating palettes and menu bars. These use
increasing amounts of screen real-estate, forcing the user to
shrink the windows displaying objects of interest. Dialog
boxes also often occlude significant parts of the screen,
making the rest of the interface inaccessible to the user.

Finally, there are more objects of interest than meet the
eye: in many applications users must manipulate secondary
objects to achieve their tasks, such as style sheets in
Microsoft Word, graphical layers in Adobe Photoshop or
Deneba Canvas, or paint brushes in MetaCreations Painter.
Once the user is familiar with the application, these objects
become part of his or her mental model and may acquire the
status of object of interest. Unfortunately, these are rarely
implemented as first-class objects. Thus, for example,
Word's styles are editable only via transient dialog boxes
that must be closed before returning to the text editing task.

2. Physical actions on objects vs. complex syntax
Most computers have only a mouse and keyboard as input
devices limiting the set of user actions to: typing text or
"special" keys (e.g. function keys, keyboard shortcuts and
modifiers), pointing, clicking, and dragging. Given the
mismatch between this small vocabulary of actions and the
large vocabulary of commands, WIMP interfaces must rely
on additional interface elements, usually menus and dialog
boxes, to specify commands. The typical sequence of
actions to carry out a command is:

• select the objet of interest by clicking it;
• select a command from a menu or keyboard shortcut;
• fill in the fields of a dialog box; and
• click the OK button to see the result.

This is conceptually no different from typing a command in
a command-line interface: The user must type a command
name, file name (the object of interest), set of arguments
(the fields in the dialog box) and the return key (the OK
button). In both cases the syntax is complex and cannot be
considered direct manipulation of the objects of interest. In
fact, WIMP interfaces directly violate principle 2 and use
indirect manipulation of the objects of interest, through
(direct) manipulation of interface elements such as menus
and dialog boxes.

3. Fast, incremental and reversible operations with an
immediately-apparent effect on the objects of interest
The heavy graphical syntax imposed on the user results in
commands that are neither fast nor incremental. Specifying
a command is not fast because of the amount of time used
for non-semantic actions such as displacing windows and
flipping through tabs in a tabbed dialog. Inputting
parameter values for a command is often inefficient because
of the small set of interactors, such as when numeric values
are entered as text. Finally, the specification is not
incremental: users must explicitly commit to a command
that uses a dialog box before seeing the result. If the result
does not match the user's expectations, the whole cycle of
command activation must be started over again. This is
especially cumbersome when trial-and-error is an integral
part of the task, as when a graphics designer selects a font
size: specifying the point size numerically is annoying
when the goal is to see the visual result on the page.

4. Layered or spiral approach to learning
The small number of interaction techniques used by WIMP
interfaces makes it easy to learn the basics of any new
application. However, interaction shortcuts, such as
combining keyboard modifiers with mouse buttons to

3

activate the frequent commands, are concealed and
inconsistent across applications and make the transition
from novice to power user more difficult.

Towards a new interaction model
Some commercial applications, especially those dedicated to
creative tasks such as painting, graphic design or music,
address some of the shortcomings identified above. For
example, some painting programs make brushes first class
objects that can be edited and saved into files. Some text
editors have inspector windows that display the state of the
current selection and update it when the user enters relevant
values. Techniques such as the HotBox (Kurtenbach et al.,
1999) were designed to access larger numbers of commands.

These interaction techniques illustrate the transition from
WIMP to Post-WIMP interfaces and highlight the need for
new interaction models to accommodate them. To guide
interface designers these models should be:

• descriptive, incorporating both existing and new
applications;

• comparative, providing metrics for comparing
alternative designs (as opposed to prescriptive,
deciding a priori what is good and what is bad); and

• generative, facilitating creation of new interaction
techniques.

INSTRUMENTAL INTERACTION
As shown in the previous analysis, WIMP interfaces do not
follow the principles of direct manipulation. Instead, they
introduce interface elements such as menus, dialog boxes
and scrollbars that act as mediators between users and the
objects of interest. Users have a (limited) sense of
engagement, as advocated by direct manipulation, because
they manipulate these intermediate objects directly. This
matches our experiences in the physical world: We rarely
fingerpaint, but often use pens and pencils to write. We
cook with pots and pans, hang pictures with hammers and
power drills, open doors with handles and turn off lights
with switches. Our interaction with the physical world is
governed by our use of tools. Direct manipulation of
physical objects of interest occurs when we bring them into
our current context of operation, before we manipulate them
with the appropriate tools (Guiard, 1987). The Instrumental
Interaction model is based on how we naturally use tools
(or instruments) to manipulate objects of interest in the
physical world. Objects of interest are called domain
objects, and are manipulated with computer artifacts called
interaction instruments.

Domain objects
In computer systems, applications operate on data that
represent phenomena or objects. For computer users, this
data is the primary focus of their actions. For example,
when creating a text document, the focus of the user is on
the text of the document. Everything else on the screen is
there to support the user's task of editing the text document.

Domain objects form the set of potential objects of interest
for the user of a given application. Domain objects have
attributes that describe their characteristics. Attributes can
be simple values or more complex objects. For example, in

a 3D modeller, the position and size of a sphere are simple
values (integer or real numbers), while the material of the
sphere is a complex entity (color, texture, transparency,
etc.). The user may shift the object of interest,
concentrating on the material as the focus of the interaction.
Similarly, text styles that describe the formatting attributes
of text also may also obtain the status of objects of
interest. Materials and styles are therefore also domain
objects in their respective interfaces.

In summary, domain objects form the basis of the
interaction as well as its purpose: Users operate on domain
objects by editing their attributes. They also manipulate
them as a whole, e.g. to create, move and delete them.

Interaction instruments
An interaction instrument is a mediator or two-way
transducer between the user and domain objects. The user
acts on the instrument, which transforms the user's actions
into commands affecting relevant target domain objects.
Instruments have reactions enabling users to control their
actions on the instrument. Instruments also provide
feedback as the command is carried out on target objects.

A scrollbar is a good example of an interaction instrument.
It operates on a whole document by changing the part that
is currently visible. When the user clicks on one of the
arrows of the scrollbar, the scrollbar sends the document a
scrolling command. Note that the transduction here consists
of sending scrolling commands as long as the user presses
the arrow. The reaction of the scrollbar consists of
highlighting the arrow being pressed. The feedback consists
of updating the thumb to reflect the new position of the
document. In addition, the object also responds to the
instrument by updating its view in the window.

Another example is an instrument that creates rectangles in
a drawing editor. As the user clicks and drags the mouse,
the instrument provides a reaction in the form of a rubber-
band rectangle. When the user releases the button, the
creation operation is actually carried out and a new domain
object is created. The feedback of this operation consists in
displaying the new object.

An instrument decomposes interaction into two layers: the
interaction between the user and the instrument, defined as
the physical action of the user on the instrument and the
reaction of the instrument and the interaction between the
instrument and the domain object, defined as the command
sent to the object and the response of the object, which the
instrument may transform into feedback to the user. The
instrument is composed of a physical part, the input device,
and a logical part, the representation of the instrument in
software and on the screen. The transduction between action
and command on the one hand, and response and feedback
on the other hand, occurs in the logical part (Figure 1).

Activating instruments
At any one time, an interface provides a potentially large
number of instruments. However the user can manipulate
only a few of them at the same time, usually only one,
because of the limited number of input devices. In the
most common case of a keyboard and mouse, a single input
device (the mouse) must be multiplexed between a

4

domain objectuser

action

reaction

command

response
feedback

instrument
Figure 1: Interaction instrument mediating the
interaction between a user and a domain object

potentially large number of instruments, i.e. a single
physical part may be associated with different logical parts.

An instrument is said to be activated when it is under the
user's control, i.e. when the physical part has been
associated with the logical part. In the case of the scrollbar,
the user activates the instrument by pointing at it and it
remains active as long as the pointer is within the scrollbar.
When creating a rectangle, the user activates the instrument
by clicking a button in a tool palette and it remains active
until another instrument is activated.

Note that these two types of activation are quite different.
The activation of the scrollbar is spatial because it is caused
by moving the mouse (and cursor) inside the area of the
scrollbar. The activation of the rectangle creation
instrument is temporal because it is caused by a former
action and remains in effect until the activation of another
instrument. (This is traditionally called a mode). Each type
of activation has an associated cost: Spatial activation
requires the instrument to be visible on the screen, taking
up screen real-estate and requiring the user to point at it and
potentially dividing the user's attention. Temporal
activation requires an explicit action to trigger the
activation, making it slower and less direct.

Interface designers often face a design trade-off between
temporal and spatial multiplexing of instruments because
the activation costs become significant when the user must
frequently change instruments. Using extra input devices
can reduce these costs. For example, the thumbwheel on
Microsoft's Intellimouse is a scrolling instrument that is
always active. An extreme example is an audio mixing
console, which may contain several hundred potentiometers
and switches, each corresponding to a single function. This
permits very fast access to all functions, which is crucial
for sound engineers working in real-time and cannot afford
the cost of activating each function indirectly. A large
design space lies between a single mouse and hundreds of
potentiometers, posing design challenges to maximally
exploit physical devices and reduce activation costs.

Reification and Meta-instruments
Reification is a process for turning concepts into objects. In
user interfaces, the resulting objects can be represented
explicitly on the screen and operated upon. For example, a
style in a text editor is the reification of a collection of text
attributes; the notion of material in a 3D modeller is the
reification of a set of rendering properties. This type of
reification generates new domain objects such as styles and
materials that complement the "primary" domain objects of
the application domain.

Instrumental Interaction introduces a second type of
reification: an interaction instrument is the reification of
one or more commands. For example, a scrollbar is the
reification of the command that scrolls a document. This
link between the traditional notion of command and the
notion of instrument makes it easy to analyze existing
interfaces with the Instrumental Interaction model. It is also
a useful guideline to identify instruments when designing a
new interface. In the last part of this paper, this rule is used
to reify the traditional search-and-replace command of a text
editor into a search instrument.

The result of this reification rule is that instruments are
themselves potential objects of interest. This is indeed the
case in real life, when the focus of attention shifts from the
object being manipulated to the tool used to manipulate it.
For example a pencil is a writing instrument and the
domain object is the text being written. When the lead
breaks, the focus shifts to a new instrument, a pencil
sharpener, which operates on the shifted domain object, the
pencil lead. The focus may even shift to the pen sharpener,
if we need a screwdriver to fix it. Such "meta-instruments"
(instruments that operate on instruments) are not only
useful for "fixing" instruments, but can also be used to
organize instruments in the workspace, e.g. a toolbox, or to
tailor instruments to particular tasks, e.g. turning a power-
drill into a power-saw. The most common examples of
meta-instruments in graphical user interfaces are menus and
tool palettes used to select commands and tools, i.e. to
activate instruments.

Properties of Instruments
An important role of an interaction model is to provide
properties to evaluate and compare alternative designs. This
can help interface designers who face difficult choices when
selecting the interaction techniques for a particular
application. The goal of defining properties of instruments
is not to decide which instruments are good and which are
bad, but to evaluate them so that designers can make an
informed choice and so that researchers can identify and
explore areas of the design space that are not mapped by
existing instruments.

The literature on user interface evaluation techniques is
considerable. Here, we focus on a particular type of
evaluation based on properties. This is a common approach
in software engineering and has also proved valid and useful
for evaluating interactive systems (Gram & Cockton,
1996). The rest of this section introduces three properties of
interaction instruments.

Degree of indirection
The degree of indirection is a 2D measure of the spatial and
temporal offsets generated by an instrument. The spatial
offset is the distance on the screen between the logical part
of the instrument and the object it operates on. Some
instruments, such as the selection handles used in graphical
editors, have a very small spatial offset since they are next
to or on top of the object they control. Other instruments,
such as dialog boxes, can be arbitrarily far away from the
object they operate on and therefore have a large spatial
offset. A large spatial offset is not necessarily undesirable.

5

scrollbars

handles

drag and
drop

property
boxes

dialog
boxes

spatial
offset

temporal
offset

Figure 2: Degree of indirection

 Menus
 Toolbars

 Dialog boxes
 Property boxes

 Handles
 Window titles

Scrollbars
Keyboard shortcuts

 Drag & drop

+
-

--

++
++

++

++ ++

++ ++
+
+

+ +

+

+

+/-

-
+

-

-

-
-

--

--
 Indirection Compatibility Integration

+/-
+/-

Table 1: Comparing WIMP interaction techniques

For example, placing a light switch far from the light bulb
it controls makes it easier to turn on the light. Similar
examples can be found in user interfaces.

The temporal offset is the time difference between the
physical action on the instrument and the response of the
object. In some cases, the object responds to the user's
action in real-time. For example, clicking an arrow in a
scrollbar scrolls the document while the mouse button is
depressed. In other cases, the object responds to the user's
action only when the action reaches closure. For example,
the arguments specified in a dialog box are taken into
account only when the OK or Apply button is activated. In
general, short temporal offsets are desirable because they
exploit the human perception-action loop and give a sense
of causality (Michotte, 1946). Sometimes performance
issues make it impossible to have a short temporal offset.

Figure 2 shows the degree of indirection of various WIMP
instruments on a 2D chart. Some devices occupy a range in
the diagram. For example, some scrollbars provide
immediate response when the thumb is moved while others
only scroll the document when the mouse button is
released. The figure shows that the degree of indirection
describes a continuum between direct manipulation (lower-
left corner) and indirect manipulation (upper-right corner).

Degree of integration
The degree of integration measures the ratio between the
degrees of freedom (DOF) provided by the logical part of the
instrument and the DOFs captured by the input device. The
term degree of integration comes from the notion of integral
tasks (Jacob et al., 1994): some tasks are performed more
efficiently when the various DOFs are controlled simultane-
ously with a single device. A scrollbar is a 1D instrument
controlled by a 2D mouse, therefore its degree of integration
is 1/2. The degree of integration can be larger than 1:
controlling 3 rotation angles with a 2D mouse (Jacob &
Oliver, 1994) has a degree of integration of 3/2. This
property can be used to compare instruments that perform
similar operations. For example, panning over a document
can be achieved with two scrollbars or a 2D panner. The
latter has a degree of integration of 1 and is therefore more
efficient than two scrollbars, which have a degree of
integration of 1/2 and incur additional activation costs.

Degree of compatibility
The degree of compatibility measures the similarity
between the physical actions of the users on the instrument
and the response of the object. Dragging an object has a

high degree of compatibility since the object follows the
movements of the mouse. Scrolling with a scrollbar has a
low degree of compatibility because moving the thumb
downwards moves the document upwards. Using text input
fields to specify numerical values in a dialog box, e.g. the
point size of a font, has a very low degree of compatibility
because the input data type is different from the output data
type. Again, this property can be used to compare
instruments that perform similar tasks, e.g. specifying the
margin in a text document by entering a number in a text
field vs. dragging a tab in a ruler.

APPLYING THE MODEL
This section uses the Instrumental Interaction model to
analyze existing interaction techniques, both from WIMP
interfaces and from more recent research. The next section
demonstrates the descriptive power of the model. The
generative power of the model is illustrated by the design of
a new instrument for searching and replacing text.

Analyzing WIMP Interfaces
The primary components of WIMP interfaces can be easily
mapped to instruments and compared (Table 1):

Menus and toolbars are meta-instruments used to select the
command or tool to activate. This use of meta-instruments
slows down interaction and generates shifts of attention
between the object of interest, the meta-instrument and the
instrument. Contextual menus have a small spatial offset
and are therefore more efficient than toolbars and menu bars.
Toolbars, which can be moved next to their context of use,
have a better spatial offset than menu bars.

Dialog boxes are used for complex commands. They have a
high degree of indirection (both spatial and temporal). They
often use a small set of standard interactors such as text
fields for numeric values, which result in a low degree of
compatibility.

Inspectors and property boxes are an alternative to dialog
boxes that have a lower degree of temporal indirection.
Since they can stay open, they can be activated with
pointing (positional activation) rather than selection in a
menu (temporal activation).

Handles are used for graphical editing and provide a very
direct interaction: low degree of indirection, high degree of
compatibility and good degree of integration.

Window titles and borders are instruments activated
positionally to manipulate the window (move, resize,
iconify, zoom, close). Scrollbars control the content of the

6

 Dynamic Queries
 Pad++ navigation

 Droppable tools
 Toolglasses

 Graspable interfaces
++

+

+

++ ++ ++

+ +
--

++

++
+

-
 Indirection Compatibility Integration

++
++

Table 2: Evaluating new interaction techniques

window. Because of their low degree of integration, they are
not optimal, especially for panning documents in 2D. Also,
their spatial offset generates a division of attention,
especially since they are activated positionally: the user
must be sure to point at the right part of the scrollbar.

Keyboard shortcuts and accelerator keys are meta-
instruments, used to quickly switch between instruments
and save the activation costs of menus and toolbars. Some
accelerator keys affect the way the current instrument
works. For example, on the Macintosh, the Shift key
constrains the move tool to horizontal and vertical moves
and the resize tool to maintain the current aspect ratio.

Drag and drop is a generic instrument for transferring or
copying information. Compared to traditional cut/copy/
paste commands that use a hidden clipboard, it has a smaller
degree of indirection. There is no spatial offset because the
objects are manipulated directly and the temporal offset is
low because there is feedback about potential drop-zones as
the user drags the object.

Over the past few years, interaction techniques such as
inspectors, property boxes, drag and drop and contextual
menus have become more common in commercial
applications. The above analysis explains why these
techniques are more efficient than their WIMP counterparts,
demonstrating a useful contribution of the Instrumental
Interaction model.

Analyzing Post-WIMP Interaction Techniques
Table 2 summarizes the comparison of several post-WIMP
interaction techniques. Interactive visualization has been
very active in the recent years, leading to a variety of new
interaction techniques (Card et al., 1998). Interactive
visualization helps users explore large quantities of visual
data and make sense of it through filtering and displaying it
to exhibit patterns. These systems use two categories of
instruments:

• navigation instruments specify which part of the data to
visualize and how; and

• filtering instruments specify queries and display results.

A key aspect of these systems is a strong coupling between
user actions and system response. In other words, these
instruments must have a small temporal offset. For
example, in the Information Visualizer (Card et al., 1991b),
the instruments used to control Cone Trees and Perspective
Walls provide immediate responses and use smooth
animations to display changes in visualization parameters.
In Dynamic Queries (Ahlberg et al., 1992), double sliders
are used to specify the range of query parameters; any
change in a slider updates the display of filtered data.

Both navigation and filtering are usually multi-dimensional
tasks: the user wants to control several dimensions
simultaneously to navigate along arbitrary trajectories. This
calls for the ability to manipulate several instruments
simultaneously (which requires additional input devices)
and/or for instruments with a high degree of integration.
Current systems do not address this well. For example,
Dynamic Queries permit only one side of a slider to be
manipulated at a time, forcing the user to navigate along
rectangular trajectories in the parameter space.

Zoomable user interfaces such as Pad++ (Bederson and
Hollan, 1994) are based on the display of an infinite flat
surface that can be viewed at any resolution. Exploring this
surface requires navigation instruments to pan and zoom
until the desired objects are in sight. Pad++ navigation
instruments are activated by modifier keys. This temporal
activation is fast and provides access to navigation
anywhere on the surface, unlike a scrollbar which requires
positional activation. It also has high degrees of
compatibility and integration. Editing the objects on the
surface has led to Dropable Tools (Bederson et al., 1994):
tools can be dropped anywhere on the surface and grabbed
later. Activating these instruments is more direct than with
a traditional toolbar because it does not involve a meta-
instrument and the associated switch of attention.

A number of recent interaction techniques rely on new or
additional input devices. This reduces activation costs by
allowing several instruments to be active simultaneously.
For example, the thumb wheel of the Intellimouse is
always attached to a scrolling instrument. ToolGlasses (Bier
et al., 1993) are semi-transparent palettes operated with a
track-ball in the left (or non-dominant) hand. The right hand
is used to click through the palette onto a domain object,
therefore specifying both the action to perform and the
object to operate on. Here the toolglass is a meta-
instrument under the control of the left hand, while the
instruments it contains are activated by the right hand. In
the TTT prototype (Kurtenbach et al., 1997), a combination
of three instruments can be active simultaneously: the
toolglass itself, an instrument in the toolglass and a
navigation instrument to pan and zoom the drawing surface.
This makes it possible, for example, to pan and zoom
while creating an object. The design exploits the trackball
and mouse input devices to minimize activation costs, to
reduce the degree of indirection and to increase the degree of
integration.

Graspable interfaces (Fitzmaurice et al., 1995) use physical
objects as input devices to manipulate virtual objects. In
effect, they transfer most of the characteristics usually found
in the logical part of the instrument into the physical part.
This approach was pioneered by Augmented Reality
(Wellner et al., 1993), which explores ways to reconcile the
physical and computer world by embedding computational
facilities into physical objects. Here, the domain objects, in
addition to the instruments, have a strong physical
component. This increases the degrees of compatibility and
integration since interaction occurs in the real world.

Designing a Text Search Instrument
In most text editors, searching and replacing text uses a
dialog box where the user specifies the string to be searched
and the string to replace it with. The operation is controlled

7

Figure 3: Search and replace instrument

with buttons to find the next or previous occurrence and
replace it or not. Undoing the command usually means
restoring the search string everywhere it has been replaced.
This results in a sequential form of interaction where the
system prompts the user and forces him or her to decide
what to do with each occurrence, generating a very large
temporal offset.

An instrumental approach to search and replace has lead to
the following design:

• The instrument provides feedback about the current
state of the search/replace operation by highlighting
all the occurrences in the text, as in the Document
Lens (Robertson & Mackinlay, 1993). Replaced
occurrences appear in a different color. In addition, to
show occurrences outside the viewing window, tick
marks appear in the scrollbar.

• The spatial offset is reduced by allowing the user to
browse the document directly to find the occurrences
(rather than using the Find Next/Prev buttons) and to
replace occurrences by clicking directly on them.

• The temporal offset is reduced by showing the effect of
replacing an occurrence immediately and allowing the
user to undo any change, not necessarily in the order
they were made.

An initial prototype was developed in Tcl/Tk using this
initial design (Figure 3). The top part of the window is the
logical part of the instrument, used to specify the search and
replace strings. No other buttons are necessary: as the user
types a search string, the occurrences highlight in yellow
both in the text window and in the scrollbar. To replace an
occurrence, the user simply clicks on it, immediately
replacing it with the replace string (if any) highlighted in
red. Editing the replace string changes all the replaced
occurrences. A replaced occurrence can be undone by
clicking on it in the same way: the search string is
substituted and highlighted in yellow. Typing text in the
document does not cancel the operation of the search
instrument: each time the text is changed, a new search is
performed.

The scrollbar was modified to facilitate browsing. First, a
mechanism was added to enable display of tick marks
representing occurrences and giving an overview of the
search. Second the arrow buttons were changed so that
clicking on an arrow scrolls the document at a variable
speed according to the distance between the cursor and the
arrow. The speed can even be inverted to go back: for
example, clicking on the up arrow, the document scrolls
slowly downwards; moving the cursor up speeds up
scrolling; moving the cursor down slows it down; moving
the cursor further down, scrolling stops, then reverts. This
reduces the division of attention that occurs when operating
the various parts of a scrollbar while focusing on the
document. It is similar in effect to the thumbwheel
described earlier but does not require a separate input device.

Two variants of the search instrument were also developed.
The first variant allows several search instruments to be
active simultaneously, each independent of the others. Each
instrument uses a different pair of colors to highlight
occurrences. This proved useful for searching a string while
another search/replace was in progress, and to highlight
keywords or occurrences of important variables when
editing a program.

In the second variant, multiple strings can be specified in
the search string and a regular expression can be specified in
the replace string. The instrument highlights all the
occurrences of all search strings at once. This variant was
used to build the index of a book: a list of words to index
was entered as a set of search strings. The replace string
added the proper markup to include the occurrence in the
index. Indexing the book became simply a matter of
picking which occurrences to include in the index, taking
advantage of the display of all occurrences to avoid putting
the same word several times in the same page. At any time
it was possible to change the list of words in the index, the
content of the text and the individual occurrences to index.

CONCLUSION AND FUTURE WORK
This article has introduced the Instrumental Interaction
model, which generalizes and operationalizes Direct
Manipulation. The model has been used to analyze WIMP
interfaces as well as more recent interaction techniques and
to design a new interface for searching and replacing text.
This demonstrates the descriptive, comparative and
generative power of the Instrumental Interaction model.

We are currently testing the model as we design a new
graphical editor for Colored Petri Nets. The model is used
both as a design guide and an evaluation tool to integrate
existing interaction techniques and create new ones.

However further work is needed to develop the model in
more detail and assess its limits. This requires a more
thorough analysis of graphical interfaces and interaction
techniques, the definition and evaluation of new properties,
a taxonomy of interaction instruments, and an exploration
of the design space defined by the model.

The other important area for future work is to make
Instrumental Interaction useful not only to user interface
designers but also to user interface developers by developing
a user interface toolkit based on the model. This would

8

support the adoption of novel interaction techniques in a
wide range of applications and allow a shift from WIMP to
post-WIMP interfaces.

REFERENCES
Ahlberg, C., Williamson, C., Shneiderman, B. (1992).

Dynamic Queries for Information Exploration: An
Implementation and Evaluation. In Proc. ACM Human
Factors in Computing Systems, CHI'92, ACM Press,
p.619-626.

Apple Computer, 1992. Macintosh Human Interface
Guidelines, Addison-Wesley.

Bederson, B. and Hollan, J. (1994). Pad++: A Zooming
Graphical Interface for Exploring Alternate Interface
Physics. In Proc. ACM Symposium on User Interface
Software and Technology, UIST’94, ACM Press, p.17-
26.

Bederson, B., Hollan, J., Druin, A., Stewart, J., Rogers,
D., Proft, D. (1994). Local Tools : an Alternative to
Tool Palettes. In Proc. ACM Symposium on User
Interface Software and Technology, UIST’94, ACM
Press, p.169-170.

Bier, E., Stone, M., Pier, K., Buxton, W., De Rose, T.
(1993). Toolglass and Magic Lenses : the See-Through
Interface. In Proc. ACM SIGGRAPH, p.73-80.

Bødker, S. (1991). Through the Interface. A Human
Activity Approach to User Interface Design. Lawrence
Erlbaum Associates.

Card, S.K., Mackinlay, J.D., Robertson, G.G. (1991). A
Morphological Analysis of the Design Space of Input
Devices. ACM Trans. Information Systems, 9(2):99-
122.

Card, S., Mackinlay, J., Shneiderman, B. (1998). Readings
in Information Visualization: Using Vision to Think.
Morgan Kaufmann Publishers.

Card, S., Robertson, G., Mackinlay, J. (1991). The
Information Visualizer, an Information Workspace. In
Proc. ACM Human Factors in Computing Systems,
CHI'91, ACM Press, p.181-187.

Fitzmaurice, G., Ishii, H., Buxton, W. (1995). Laying the
Foundations for Graspable User Interfaces. In Proc.
ACM Human Factors in Computing Systems, CHI'95,
ACM Press, p.442-449.

Foley, J., Wallace, V., Chan, P. (1984). The Human
Factors of Computer Graphics Interaction Techniques.
Computer Graphics and Applications, 4(11):13-48.

Gram, C. & Cockton, G. (1996). Design Principles for
Interactive Software, Chapman & Hall.

Guiard, Y. (1987). Asymmetric division of labor in human
skilled bimanual action: The kinematic chain as a
model. Journal of Motor Behavior, 19:486-517.

Heller, D., Ferguson, P.M., Brennan, D. (1994). Motif
Programming Manual, O'Reilly & Associates.

Holland, S. & Oppenheim, D. (1999). Direct Combination.
Proc. ACM Human Factors in Computing Systems,
CHI'99, ACM Press, p.262-269.

Jacob, I. & Oliver, J. (1995). Evaluation of Techniques for
Specifying 3D Rotations with a 2D Input Device. Proc.
HCI'95 Conference, People and Computers X, p.63-76.

Jacob, R., Sibert, L., McFarlane, D., Preston Mullen, M.
(1994). Integrability and Separability of Input Devices.
ACM Trans. Human Computer Interaction, 1(1), p.3-
26.

Krasner, G.E. & Pope, S.T. (1988). A Description of the
Model-View-Controller User Interface Paradigm in the
Smalltalk80 System. J. Object Oriented Programming
1(3):26-49.

Kurtenbach, G. & Buxton, W. (1994). User Learning and
Performance with Marking Menus. Proc. ACM Human
Factors in Computing Systems, CHI'94, ACM Press,
p.258-264.

Kurtenbach, G., Fitzmaurice, G., Baudel, T., Buxton. W.
(1997). The Design of a GUI Paradigm based on
Tablets, Two-hands, and Transparency. In Proc. ACM
Human Factors in Computing Systems, CHI'97, ACM
Press, p.35-42.

Kurtenbach, G., Fitzmaurice, G.W., Owen, R.N., Baudel,
T. (1999). The Hotbox: efficient access to a large
number of menu-items. Proc. ACM Human Factors in
Computing Systems, CHI'99, ACM Press, p.231-237.

Michotte, A. (1946). La perception de la causalité.
Publications Universitaires de Louvain.

Myers, B.A. (1995). User Interface Software Tools. ACM
Trans. Computer-Human Interaction, 2(1):64-103.

Myers, B.A. (1990). A New Model for Handling Input.
ACM Trans. Information Systems, 8(3):289-320.

Robertson, G.G. & Mackinlay, J.D. (1993). The Document
Lens Visualizing Information. Proc. ACM Symposium
on User Interface Software and Technology, p.101-108

Shneiderman, B. (1983). Direct Manipulation : a Step
Beyond Programming Languages. IEEE Computer,
16(8), pp 57-69.

Smith, D., Irby, C., Kimball, R., Verplank, B., Harslem
E. (1982). Designing the Star User Interface. Byte, 7(4),
p.242:282.

Szekely, P., Luo. P., Neches, R. (1993). Beyond Interface
Builders: Model-Based Interface Tools Model-Based.
Proc. ACM Human Factors in Computing Systems,
INTERCHI'93, ACM Press, p.383-390.

Took, R. (1990). Surface Interaction: A Paradigm and
Model for Separating Application and Interface. Proc.
ACM Human Factors in Computing Systems, CHI'90,
ACM Press, p.35-42.

Wellner, P., Mackay, M., Gold R. (1993). Computer-
Augmented Environments. Special Issue of
Communications of the ACM, 23(7).

